Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Circ Res ; 132(4): 483-497, 2023 02 17.
Article in English | MEDLINE | ID: covidwho-2300453

ABSTRACT

Heart disease is a significant burden on global health care systems and is a leading cause of death each year. To improve our understanding of heart disease, high quality disease models are needed. These will facilitate the discovery and development of new treatments for heart disease. Traditionally, researchers have relied on 2D monolayer systems or animal models of heart disease to elucidate pathophysiology and drug responses. Heart-on-a-chip (HOC) technology is an emerging field where cardiomyocytes among other cell types in the heart can be used to generate functional, beating cardiac microtissues that recapitulate many features of the human heart. HOC models are showing great promise as disease modeling platforms and are poised to serve as important tools in the drug development pipeline. By leveraging advances in human pluripotent stem cell-derived cardiomyocyte biology and microfabrication technology, diseased HOCs are highly tuneable and can be generated via different approaches such as: using cells with defined genetic backgrounds (patient-derived cells), adding small molecules, modifying the cells' environment, altering cell ratio/composition of microtissues, among others. HOCs have been used to faithfully model aspects of arrhythmia, fibrosis, infection, cardiomyopathies, and ischemia, to name a few. In this review, we highlight recent advances in disease modeling using HOC systems, describing instances where these models outperformed other models in terms of reproducing disease phenotypes and/or led to drug development.


Subject(s)
Cardiomyopathies , Heart Diseases , Induced Pluripotent Stem Cells , Pluripotent Stem Cells , Animals , Humans , Heart Diseases/therapy , Heart Diseases/metabolism , Myocytes, Cardiac/metabolism , Cardiomyopathies/metabolism , Pluripotent Stem Cells/metabolism , Lab-On-A-Chip Devices
2.
Front Endocrinol (Lausanne) ; 13: 896378, 2022.
Article in English | MEDLINE | ID: covidwho-1963430

ABSTRACT

Aims: Pre-existing conditions, such as age, hypertension, obesity, and diabetes, constitute known risk factors for severe COVID-19. However, the impact of prediabetes mellitus (PDM) on COVID-19 severity is less clear. This study aimed to evaluate the influence of PDM in the acute and long-term phases of COVID-19. Materials and methods: We compared inflammatory mediators, laboratory and clinical parameters and symptoms in COVID-19 patients with prediabetes (PDM) and without diabetes (NDM) during the acute phase of infection and at three months post-hospitalization. Results: Patients with PDM had longer hospital stays and required intensive care unit admission more frequently than NDM. Upon hospitalization, PDM patients exhibited higher serum levels of interleukin 6 (IL-6), which is related to reduced partial pressure of oxygen (PaO2) in arterial blood, oxygen saturation (SpO2) and increased COVID-19 severity. However, at three months after discharge, those with PDM did not exhibit significant alterations in laboratory parameters or residual symptoms; however, PDM was observed to influence the profile of reported symptoms. Conclusions: PDM seems to be associated with increased risk of severe COVID-19, as well as higher serum levels of IL-6, which may constitute a potential biomarker of severe COVID-19 risk in affected patients. Furthermore, while PDM correlated with more severe acute-phase COVID-19, no long-term worsening of sequelae was observed.


Subject(s)
COVID-19 , Diabetes Mellitus , Interleukin-6/biosynthesis , Prediabetic State , COVID-19/complications , Hospitalization , Humans , Prediabetic State/complications
3.
Sport Sci Health ; 18(4): 1505-1512, 2022.
Article in English | MEDLINE | ID: covidwho-1926065

ABSTRACT

Purpose: To compare changes in physical activity level (PAL), sitting time (ST), and binge eating disorder (BED) in overweight/obese adults vs. those normal weight during social distancing caused by the COVID-19 pandemic. Methods: A cross-sectional and retrospective study was carried out with adults of both sexes, aged 18-60 years, which assessed, through an online form, the PAL, ST, and BED pre (PSD) and during social distancing (DSD) caused by the COVID-19 pandemic. The PAL and ST were assessed by the short version of the International Physical Activity Questionnaire and the assessment of BED by the Binge Eating Scale. Results: 323 responses were included in the analysis (194 normal weight and 129 overweight/obese). There was a decrease in PAL and an increase in the prevalence of BED in both groups; nevertheless, the overweight/obese group had a 62% chance of presenting lower PALs than normal-weight individuals (OR = 1.62; 95% CI 1.03-2.55) and showed a lower total weekly physical activity time during the pandemic (adjusted p = 0.05). In addition, overweight individuals were more likely to binge eat before (OR = 4.21; 95% CI 2.10-8.45) and during the pandemic (OR = 4.24; 95% CI 2.54-7.06) and showed a higher prevalence during social distancing. Conclusion: The social distancing caused by the COVID-19 pandemic changed exercise behaviors and increased the prevalence of binge eating in the general population. However, overweight/obese participants engaged in less total weekly physical activity and showed a higher prevalence of binge eating before and during social distancing. Level of evidence: Level III; analytical observational cohort study.

4.
Diabetes ; 70(9): 2120-2130, 2021 09.
Article in English | MEDLINE | ID: covidwho-1528788

ABSTRACT

Diabetes is a known risk factor for severe coronavirus disease 2019 (COVID-19), the disease caused by the new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is a lack of knowledge about the mechanisms involved in the evolution of COVID-19 in individuals with diabetes. We aimed to evaluate whether the chronic low-grade inflammation of diabetes could play a role in the development of severe COVID-19. We collected clinical data and blood samples of patients with and without diabetes hospitalized for COVID-19. Plasma samples were used to measure inflammatory mediators and peripheral blood mononuclear cells, for gene expression analysis of the SARS-CoV-2 main receptor system (ACE2/TMPRSS2), and for the main molecule of the leukotriene B4 (LTB4) pathway (ALOX5). We found that diabetes activates the LTB4 pathway and that during COVID-19 it increases ACE2/TMPRSS2 as well as ALOX5 expression. Diabetes was also associated with COVID-19-related disorders, such as reduced oxygen saturation as measured by pulse oximetry/fraction of inspired oxygen (FiO2) and arterial partial pressure of oxygen/FiO2 levels, and increased disease duration. In addition, the expressions of ACE2 and ALOX5 are positively correlated, with increased expression in patients with diabetes and COVID-19 requiring intensive care assistance. We confirmed these molecular results at the protein level, where plasma LTB4 is significantly increased in individuals with diabetes. In addition, IL-6 serum levels are increased only in individuals with diabetes requiring intensive care assistance. Together, these results indicate that LTB4 and IL-6 systemic levels, as well as ACE2/ALOX5 blood expression, could be early markers of severe COVID-19 in individuals with diabetes.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , Arachidonate 5-Lipoxygenase/metabolism , COVID-19/pathology , Diabetes Mellitus/pathology , Leukotriene B4/metabolism , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Arachidonate 5-Lipoxygenase/genetics , COVID-19/metabolism , Gene Expression Regulation , Humans , Inflammation/metabolism , Leukotriene B4/genetics , Risk Factors , Signal Transduction
5.
Ageing Res Rev ; 62: 101123, 2020 09.
Article in English | MEDLINE | ID: covidwho-650288

ABSTRACT

Coronavirus disease 19 (COVID-19) is a pandemic condition caused by the new coronavirus SARS-CoV-2. The typical symptoms are fever, cough, shortness of breath, evolving to a clinical picture of pneumonia and, ultimately, death. Nausea and diarrhea are equally frequent, suggesting viral infection or transmission via the gastrointestinal-enteric system. SARS-CoV-2 infects human cells by using angiotensin converting enzyme 2 (ACE2) as a receptor, which is cleaved by transmembrane proteases during host cells infection, thus reducing its activities. ACE2 is a relevant player in the renin-angiotensin system (RAS), counterbalancing the deleterious effects of angiotensin II. Furthermore, intestinal ACE2 functions as a chaperone for the aminoacid transporter B0AT1. It has been suggested that B0AT1/ACE2 complex in the intestinal epithelium regulates gut microbiota (GM) composition and function, with important repercussions on local and systemic immune responses against pathogenic agents, namely virus. Notably, productive infection of SARS-CoV-2 in ACE2+ mature human enterocytes and patients' GM dysbiosis was recently demonstrated. This review outlines the evidence linking abnormal ACE2 functions with the poor outcomes (higher disease severity and mortality rate) in COVID-19 patients with pre-existing age-related comorbidities and addresses a possible role for GM dysbiosis. The article culminates with the therapeutics opportunities based on these pathways.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/microbiology , Dysbiosis/virology , Gastrointestinal Microbiome , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/microbiology , Angiotensin-Converting Enzyme 2 , COVID-19 , Comorbidity , Coronavirus Infections/complications , Coronavirus Infections/enzymology , Coronavirus Infections/therapy , Host-Pathogen Interactions , Humans , Molecular Targeted Therapy , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/enzymology , Pneumonia, Viral/therapy , Receptor Cross-Talk , Renin-Angiotensin System , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL